

LE910Cx Linux Device

Driver
 Application Note

 80502NT11769A Rev. 7 – 2022-03-14

Telit Technical Documentation

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 2 of 60 2022-03-14

Not Subject to NDA

Contents

APPLICABILITY TABLE 4

1. INTRODUCTION 5

 Scope 5

 Audience 5

 Contact Information, Support 5

 Symbol Conventions 6

 Related Documents 6

2. I2C INTERFACE 7

 Using I2C Interface 7

3. HSIC INTERFACE 10

 HSIC Signaling 10

 Configuring HSIC Master/ Slave Mode 11

4. ETHERNET INTERFACE 12

 Using SGMII Interface 12

4.1.1. Checking Ethernet Cable Connection Status 12

4.1.2. Controlling Ethernet Interface in User Application 13

4.1.3. Enabling/Disabling the “CLK125” of External Marvell PHY (88E1512/5) 16

5. GPIO INTERFACE 17

 Using GPIO Interface 17

 Using GPIO Interrupt 23

6. SPI INTERFACE 26

 Switching from SPI to Aux UART or from Aux UART to SPI 26

 Configuring SPI to Support Multiple CS for Multiple Slave Devices 27

 Configuring SPI to Support Multiple Slave Devices with Interrupt 29

6.3.1. Getting SPI Interrupt in Application Layer 31

 Configuring SPI to Support Multiple Slave Ready Signal 34

7. SD/MMC CARD INTERFACE 37

 Detecting/Mounting of SD/MMC Memory Card 37

8. UART INTERFACE 38

 Using #V24CFG Command 38

 Using #PORTCFG Command 40

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 3 of 60 2022-03-14

Not Subject to NDA

9. USB INTERFACE 42

 Reading Current USB Product ID 42

 Changing USB Composition 44

10. EXCEPTION INFORMATION 46

 Reading Exception Information 46

 Clearing Stored Information 46

11. WLAN INTERFACE 47

 Setting WLAN SDIO Clock 47

 Getting Current WLAN SDIO Clock 47

12. OPM INTERFACE 48

 Using OPM Interface 48

 Configuring PSM DTR and WAKE_LOCK 50

13. THERMAL SENSOR INTERFACE 52

 Reading Thermal Sensors 52

14. ADC INTERFACE 53

 Reading ADC Values 53

15. PRODUCT AND SAFETY INFORMATION 54

 Copyrights and Other Notices 54

15.1.1. Copyrights 54

15.1.2. Computer Software Copyrights 54

 Usage and Disclosure Restrictions 55

15.2.1. License Agreements 55

15.2.2. Copyrighted Materials 55

15.2.3. High Risk Materials 55

15.2.4. Trademarks 56

15.2.5. Third Party Rights 56

15.2.6. Waiver of Liability 56

 Safety Recommendations 57

16. GLOSSARY 58

17. DOCUMENT HISTORY 59

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 4 of 60 2022-03-14

Not Subject to NDA

APPLICABILITY TABLE

PRODUCTS

LE910C1-NA

LE910C1-NS

LE910C1-NF

LE910C4-NF

LE910C1-EU

LE910C4-EU

LE910C1-AP

LE910C4-AP

LE910C1-LA

LE910C4-LA

LE910C4-CN

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 5 of 60 2022-03-14

Not Subject to NDA

1. INTRODUCTION

 Scope

This document provides the descriptions and example code for controlling and

configuring the interfaces.

 Audience

This document is intended for Telit customers, especially system integrators, about to

implement their applications using the Telit LE910Cx module.

 Contact Information, Support

For technical support and general questions please e-mail:

• TS-EMEA@telit.com

• TS-AMERICAS@telit.com

• TS-APAC@telit.com

• TS-SRD@telit.com

• TS-ONEEDGE@telit.com

Alternatively, use:

https://www.telit.com/contact-us/

Product information and technical documents are accessible 24/7 on our web site:

https://www.telit.com

mailto:TS-EMEA@telit.com
mailto:TS-AMERICAS@telit.com
mailto:TS-APAC@telit.com
mailto:TS-SRD@telit.com
mailto:TS-ONEEDGE@telit.com
https://www.telit.com/contact-us/
https://www.telit.com/

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 6 of 60 2022-03-14

Not Subject to NDA

 Symbol Conventions

Danger: This information MUST be followed, or catastrophic

equipment failure or personal injury may occur.

Warning: Alerts the user on important steps about the module

integration.

Note/Tip: Provides advice and suggestions that may be useful when

integrating the module.

Electro-static Discharge: Notifies the user to take proper grounding

precautions before handling the product.

Table 1: Symbol Conventions

All dates are in ISO 8601 format, that is YYYY-MM-DD.

 Related Documents

• LE910Cx AT Commands Reference Guide, 80502ST10950A

• LE910Cx Software User Guide, 1VV0301556

• LE910Cx Hardware User Guide, 1VV0301298

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 7 of 60 2022-03-14

Not Subject to NDA

2. I2C INTERFACE

LE910Cx has a single I2C port and only supports master mode.

Figure 1: I2C Master Mode Interface

The following pins on the LE910Cx support an I2C interface:

• B11 - I2C_SCL

• B10 - I2C_SDA

 Using I2C Interface

The I2C interface can be used externally by the end-user application. The I2C interface

is accessible from the Linux driver device node(/dev/i2c-4).

Example:

#define I2C_4_DEV_NAME "/dev/i2c-4"

static int i2c_write(int fd,unsigned char slave_addr,unsigned char

reg,unsigned char value)

{

 unsigned char outbuf[2];

 struct i2c_rdwr_ioctl_data packets;

 struct i2c_msg messages[1];

 messages[0].addr = slave_addr;

 messages[0].flags = 0;

 messages[0].len = sizeof(outbuf);

 messages[0].buf = outbuf;

 /* The first byte indicates which register we'll write */

 outbuf[0] = reg;

 /*

 * The second byte indicates the value to write. Note that for many

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 8 of 60 2022-03-14

Not Subject to NDA

 * devices, we can write multiple, sequential registers at once by

 * simply making outbuf bigger.

 */

 outbuf[1] = value;

 /* Transfer the i2c packets to the kernel and verify it worked */

 packets.msgs = messages;

 packets.nmsgs = 1;

 if (ioctl(fd, I2C_RDWR, &packets) < 0) {

 perror("[I2C] Unable to send data");

 return 1;

 }

 return 0;

}

static int i2c_read(int file,unsigned char addr,unsigned char reg,unsigned

char *val)

{

 unsigned char inbuf, outbuf;

 struct i2c_rdwr_ioctl_data packets;

 struct i2c_msg messages[2];

 /*

 * In order to read a register, we first do a "dummy write" by writing

 * 0 bytes to the register we want to read from. This is similar to

 * the packet in set_i2c_register, except it's 1 byte rather than 2.

 */

 outbuf = reg;

 messages[0].addr = addr;

 messages[0].flags = 0;

 messages[0].len = sizeof(outbuf);

 messages[0].buf = &outbuf;

 /* The data will get returned in this structure */

 messages[1].addr = addr;

 messages[1].flags = I2C_M_RD/* | I2C_M_NOSTART*/;

 messages[1].len = sizeof(inbuf);

 messages[1].buf = &inbuf;

 /* Send the request to the kernel and get the result back */

 packets.msgs = messages;

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 9 of 60 2022-03-14

Not Subject to NDA

 packets.nmsgs = 2;

 if(ioctl(file, I2C_RDWR, &packets) < 0) {

 perror("[I2C] Unable to send data");

 return 1;

 }

 *val = inbuf;

 return 0;

}

int main(int argc, char **argv)

{

 int i2c_fd = NULL;

 …

 // Open a connection to the I2C userspace control file.

 if ((i2c_fd = open(I2C_4_DEV_NAME, O_RDWR)) < 0) {

 perror("[I2C] Unable to open i2c_4 control file");

 exit(1);

}

i2c_write(i2c_fd,…….);

i2c_read(i2c_fd,…….);

close(i2c_fd);

return 0;

}

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 10 of 60 2022-03-14

Not Subject to NDA

3. HSIC INTERFACE

LE910Cx provides a two-wire HSIC interface and supports HSIC master/ slave mode.

The LE910Cx HSIC interface supports the following features:

• No hot plug detection

• No hot removal/attachment, interface is always connected

• No high-speed chirp protocols

• HSIC master/slave mode support

 HSIC Signaling

Table 2, details all the basic signaling protocols for HSIC. Many signals, such as

CONNECT/RESUME and IDLE/SUSPEND are equivalent.

Bus State Strobe Data Description

IDLE High Low 1 or more Strobe-periods

CONNECT Low High 2 Strobe-periods

RESUME Low High For time periods per USB 2.0 specification

SUSPEND High Low Identical to IDLE state

RESET Low Low Per USB 2.0 specification

Table 2: HSIC Signaling Summary

Figure 2: IDLE to CONNECT Signaling Example (LE910Cx Master and LE910Cx Slave)

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 11 of 60 2022-03-14

Not Subject to NDA

Figure 2, illustrates the connect sequence as described below:

• After powering on both HSIC master and slave, master driver is in IDLE bus state.

• Slave monitors the HSIC interface for an IDLE bus state from master.

• Master monitors the HSIC interface for a CONNECT bus state from the slave

device.

• Master detects a CONNECT bus state and starts enumeration.

 Configuring HSIC Master/ Slave Mode

The HSIC can be configured as master/slave mode by the end-user application. HSIC

interface can be accessible from Linux driver device node (/dev/m2m_drv_cfg) for

master/ slave mode configuration.

Example:

#define M2M_DRV_CFG_DEV_NAME "/dev/m2m_drv_cfg"

#define M2M_DRV_CFG_MAGIC 't'

#define M2M_DRV_IOCTL_HSIC_GET_MODE _IOR(M2M_DRV_CFG_MAGIC,0,unsigned int)

#define M2M_DRV_IOCTL_HSIC_SET_MODE _IOW(M2M_DRV_CFG_MAGIC,1,unsigned int)

/*open device driver node*/

fd = open(M2M_DRV_CFG_DEV_NAME, O_RDWR);

/* Get the status of HSIC mode

 0 – disable HSIC configuration

 1 – Enable HSIC master mode

 2 – Enable HSIC slave mode

*/

ret = ioctl(fd, M2M_DRV_IOCTL_HSIC_GET_MODE, &hsic_mode);

/* Set HSIC to master mode */

hsic_mode = 1;

ret = ioctl(fd, M2M_DRV_IOCTL_HSIC_GET_MODE, &hsic_mode);

if(ret < 0) {

 printf("HSIC mode setting is failed\n");

}

else

{

 /*Manual reboot is required after change HSIC mode*/

 system("reboot");

}

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 12 of 60 2022-03-14

Not Subject to NDA

4. ETHERNET INTERFACE

The LE910Cx has an embedded Ethernet MAC and only supports SGMII interface.

The embedded Ethernet MAC of LE910Cx supports the following features:

• IEEE 802.3 Ethernet 10/100/1000Mbps, SGMII IF

• SGMII interface can be used using external PHY (SGMII to external PHY)

o Giga Ethernet PHY can be used by a transceiver chip. For example, Marvell

88EA1512 PHY chip.

 Using SGMII Interface

Before activating the ethernet interface, connect the SGMII interface between LE910Cx

and external PHY chip.

The Ethernet interface on the LE910Cx is activated by a shell script

(/etc/init.d/start_emac_le) , which can be run by an end-user application.

Example:

/etc/init.d/start_emac_le start

4.1.1. Checking Ethernet Cable Connection Status

Ethernet cable connection status can be checked only when the ethernet PHY and MAC

drivers are enabled.

Example:

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 13 of 60 2022-03-14

Not Subject to NDA

cat /sys/class/net/eth0/carrier

0 : ethernet cable disconnected state

1 : ethernet cable connected state

4.1.2. Controlling Ethernet Interface in User Application

The ethernet device driver is provided to control ethernet functions by end-user

application. This driver is accessible from Linux driver device node (/dev/m2m_eth).

This driver supports following functions:

• Ethernet mode (LAN mode or WAN mode)

• Ethernet auto connection mode: If auto connection mode is enabled based on the

Ethernet mode setting (LAN or WAN mode), a backhaul connection is established

or a DHCP client is executed.

• Ethernet disable mode: If disabled mode is set, ethernet driver is disabled.

Note: Ethernet PHY chip should be connected.

Example:

#define TELIT_ETH_DEV_NAME "/dev/m2m_eth"

#define TELIT_ETH_CFG_MAGIC 't'

typedef struct {

/* conn_mode variable *./

int conn_mode;

/* 0: etheret interface is disabled

 2: automatically ethernet interface is enabled and backhaual connection is

established or DHCP client is executed base on ethernet mode setting (LAN

mode or WAN mode).

*/

/* cid variable for PDP Context Identifier*./

 int cid; // range 1-16

}m2m_conn_mode_type;

#define IOCTL_M2M_ETH_SET_CONN_MODE _IOW(TELIT_ETH_CFG_MAGIC, 0,

m2m_conn_mode_type)

#define IOCTL_M2M_ETH_GET_CONN_MODE _IOR(TELIT_ETH_CFG_MAGIC, 1,

m2m_conn_mode_type)

#define IOCTL_M2M_ETH_SET_MODE _IOW(TELIT_ETH_CFG_MAGIC, 2, int)

#define IOCTL_M2M_ETH_GET_MODE _IOR(TELIT_ETH_CFG_MAGIC, 3, int)

typedef enum

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 14 of 60 2022-03-14

Not Subject to NDA

{

 ETH_CON_MODE_OFF = 0,

 ETH_CON_MODE_AUTO = 2

}eth_con_mode_enum;

typedef enum

{

 ETH_LAN_MODE = 0,

 ETH_WAN_MODE = 1

}eth_mode_enum;

int main(int argc, char *argv[])

{

 int fd;

 int result;

 int mode;

 m2m_conn_mode_type m2m_conn_mode = {0,};

 fd = open(TELIT_ETH_DEV_NAME,O_RDWR);

 if(fd < 0)

 {

 printf("driver open failed \n");

 return -1;

 }

 /* Get current connection mode

 result = ioctl(fd, IOCTL_M2M_ETH_GET_CONN_MODE, &m2m_conn_mode);

 if(result < 0)

 {

 printf("get ethernet connetion mode is failed\n");

 }

 /* Get current ethernet mode

 0 : LAN mode (Deafult)

 1 : WAN mode

 */

 result = ioctl(fd, IOCTL_M2M_ETH_GET_MODE, &mode);

 if(result < 0)

 {

 printf("ethernet mode setting is failed\n");

 }

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 15 of 60 2022-03-14

Not Subject to NDA

 /* change ethernet mode to WAN mode */

 m2m_conn_mode.conn_mode = ETH_CON_MODE_OFF;

 result = ioctl(fd, IOCTL_M2M_ETH_SET_CONN_MODE, &m2m_conn_mode);

 if(result < 0)

 {

 printf("ethernet connetion mode setting is failed\n");

 }

 mode = ETH_WAN_MODE; // WAN mode

 result = ioctl(fd, IOCTL_M2M_ETH_SET_MODE, &mode);

 if(result < 0)

 {

 printf("ethernet mode setting is failed\n");

 }

 /* enable auto connection */

 m2m_conn_mode.conn_mode = ETH_CON_MODE_AUTO;

 result = ioctl(fd, IOCTL_M2M_ETH_SET_CONN_MODE, &m2m_conn_mode);

 if(result < 0)

 {

 printf("ethernet connetion mode setting is failed\n");

 }

 /* change ethernet mode to LAN mode */

 m2m_conn_mode.conn_mode = ETH_CON_MODE_OFF;

 result = ioctl(fd, IOCTL_M2M_ETH_SET_CONN_MODE, &m2m_conn_mode);

 if(result < 0)

 {

 printf("ethernet connetion mode setting is failed\n");

 }

 mode = ETH_LAN_MODE; // LAN mode

 result = ioctl(fd, IOCTL_M2M_ETH_SET_MODE, &mode);

 if(result < 0)

 {

 printf("ethernet mode setting is failed\n");

 }

 m2m_conn_mode.conn_mode = ETH_CON_MODE_AUTO;

 m2m_conn_mode.cid = 1;

 result = ioctl(fd, IOCTL_M2M_ETH_SET_CONN_MODE, &m2m_conn_mode);

 if(result < 0)

 {

 printf("ethernet connetion mode setting is failed\n");

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 16 of 60 2022-03-14

Not Subject to NDA

 }

 close(fd)

 return 0;

}

4.1.3. Enabling/Disabling the “CLK125” of External Marvell PHY

(88E1512/5)

If you use an external PHY instead of a Marvell PHY, you can control the "CLK125 (Page

2, Reg 16 bit 2)".

Value Description

0 (Default) Enable internally generated 125MHz clock

1 Disable internally generated 125MHz clock

Table 3: Enable/Disable CLK125

For example,

• To enable the CLK125,

If a value of the “/data/marvell_clk” is set to 0 as above, 125MHz clock is

enabled.

• To disable the CLK125,

If a value of the “/data/marvell_clk” is set to 1 as above, 125MHz clock is

disabled.

Note: To control CLK125, it must be set before the ethernet interface

is activated.

The setting is not retained after a firmware update, but it is retained

after a FOTA update.

This feature is only available for the LE910C1-EU (4G+2G) variant.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 17 of 60 2022-03-14

Not Subject to NDA

5. GPIO Interface

LE910Cx provides 10 GPIOs and 8 UART pins, which can be configured as Input and Output

through a Linux device driver.

These GPIO pins allow your application to control external hardware directly from the

GPIO pins, requiring little or no additional hardware.

The LE910Cx supports the following GPIO pins:

Pin Number GPIO/UART Pins

1 GPIO1

2 GPIO2

3 GPIO3

4 GPIO4

5 GPIO5

6 GPIO6

7 GPIO7

8 GPIO8

9 GPIO9

10 GPIO10

20 DCD

21 CTS

22 RI

23 DSR

24 DTR

25 RTS

26 RXD

27 TXD

Table 4: LE910Cx Supported GPIO Pins

To use UART pins as GPIO, use the #V24CFG command to set them to GPIO mode. For

details refer to section 8.1 Using #V24CFG Command.

 Using GPIO Interface

The GPIO device driver is provided to allow the common use of GPIOs in various LE910Cx

hardware configurations.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 18 of 60 2022-03-14

Not Subject to NDA

The GPIOs can be used externally by the end-user application. The GPIO interface is

accessible from Linux driver device node (/dev/m2m_gpio).

The following is the list of the supported GPIO I/F parameters:

Parameter Description

<mode> Set GPIO modes:

0 - Clear the use of GPIO

1 - Set GPIO direction

2 - Set GPIO output value

3 - Read GPIO value

<gpio> GPIO pin number:

(TGPIO)1-10, (UART)20-27

<dir> GPIO pin direction:

0 - Pin direction is INPUT

1 - Pin direction is OUTPUT

<val> Its meaning depends on <dir> setting:

0 - Output pin set to 0 (Low) if <dir>=1 - OUTPUT

 - Input pin set to 0 (Pull-down) if <dir>=0 - INPUT (default)

1 - Output pin set to 1 (High) if <dir>=1 - OUTPUT

 - Input pin set to 1 (Pull-up) if <dir>=0 - INPUT

2 - Input pin set to 2 (No-Pull) if <dir>=0 - INPUT

Table 5: Supported GPIO I/F Parameters

Example:

#define GPIO_DEV_PATH "/dev/m2m_gpio"

/* Parameters to be passed through IOCTL */

 typedef struct {

 unsigned int m2m_gpio_num;

 unsigned int m2m_gpio_dir;

 unsigned int m2m_gpio_val;

 }m2m_gpio_info;

#define M2M_GPIO_MAGIC 'g'

#define IOCTL_M2M_APP_GPIO_CLR _IOW(M2M_APP_GPIO_MAGIC, 0,

m2m_gpio_info)

#define IOCTL_M2M_APP_GPIO_SET_DIR _IOW(M2M_APP_GPIO_MAGIC, 1,

m2m_gpio_info)

#define IOCTL_M2M_APP_GPIO_SET_VAL _IOW(M2M_APP_GPIO_MAGIC, 2,

m2m_gpio_info)

#define IOCTL_M2M_APP_GPIO_GET_VAL _IOW(M2M_APP_GPIO_MAGIC, 3,

m2m_gpio_info)

#define MAX_DEFIEND_TGPIO_NUM 10

#define MIN_UART_GPIO 20

#define MAX_UART_GPIO 27

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 19 of 60 2022-03-14

Not Subject to NDA

/* GPIO value parameters for output */

enum

{

 M2M_APP_GPIO_OUT_LOW = 0,

 M2M_APP_GPIO_OUT_HIGH,

 M2M_APP_GPIO_OUT_MAX

};

/* GPIO pull parameters for input */

enum

{

 M2M_APP_GPIO_IN_PD = 0,

 M2M_APP_GPIO_IN_PU,

 M2M_APP_GPIO_IN_NP,

 M2M_APP_GPIO_IN_MAX

};

/* GPIO direction parameters */

enum

{

 M2M_APP_GPIO_DIR_IN = 0,

 M2M_APP_GPIO_DIR_OUT,

 M2M_APP_GPIO_DIR_MAX

};

/* GPIO command parameters */

enum

{

 M2M_APP_GPIO_MODE_CLR = 0,

 M2M_APP_GPIO_MODE_SET_DIR,

 M2M_APP_GPIO_MODE_SET_VAL,

 M2M_APP_GPIO_MODE_GET_VAL,

 M2M_APP_GPIO_MODE_MAX

};

/* GPIO command parameters */

enum

{

 M2M_APP_GPIO_MODE_CLR = 0,

 M2M_APP_GPIO_MODE_SET_DIR,

 M2M_APP_GPIO_MODE_SET_VAL,

 M2M_APP_GPIO_MODE_GET_VAL,

 M2M_APP_GPIO_MODE_MAX

};

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 20 of 60 2022-03-14

Not Subject to NDA

 int main(int argc, char *argv[])

{

 int dev = 0;

 int ret = -1;

 m2m_gpio_info *m2m_gpio;

 if(atoi(argv[1]) >= M2M_APP_GPIO_MODE_MAX)

 {

 perror("[GPIO] Mode Parameter out of range \n");

 return -1;

 }

 dev = open(GPIO_DEV_PATH, O_RDWR);

 if(dev < 0)

 {

 perror("[GPIO] driver open failed \n");

 return -1;

 }

 m2m_gpio = (m2m_gpio_info *)malloc(sizeof(m2m_gpio_info));

 memset(m2m_gpio, 0x00, sizeof(m2m_gpio_info));

 switch(atoi(argv[1]))

 {

 /* When the use of GPIO is completed, it should be cleared and made

available to other devices */

 case M2M_GPIO_MODE_CLR:

 if(((atoi(argv[2]) > MAX_DEFINED_TGPIO_NUM) && (atoi(argv[2]) <

MIN_UART_GPIO))

 || (atoi(argv[2]) > MAX_UART_GPIO))

 {

 perror("[GPIO] GPIO parameter out of range \n");

 return -1;

 }

 m2m_gpio->m2m_gpio_num = atoi(argv[2]);

 ret = ioctl(dev, IOCTL_M2M_APP_GPIO_CLR, m2m_gpio);

 if(ret)

 {

 perror("[GPIO] ioctl control failure \n");

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 21 of 60 2022-03-14

Not Subject to NDA

 return ret;

 }

 break;

 /* Direction should be set to Input (with pull) or Output to control the

GPIO */

 case M2M_GPIO_MODE_SET_DIR:

 if((((atoi(argv[2]) > MAX_DEFINED_TGPIO_NUM) && (atoi(argv[2]) <

MIN_UART_GPIO))

 || (atoi(argv[2]) > MAX_UART_GPIO))

 ||(atoi(argv[3]) >= M2M_APP_GPIO_DIR_MAX))

 {

 perror("[GPIO] GPIO parameter out of range \n");

 return -1;

 }

 m2m_gpio->m2m_gpio_num = atoi(argv[2]);

 m2m_gpio->m2m_gpio_dir = atoi(argv[3]);

 if(argv[4])

 {

 if(((atoi(argv[3]) == M2M_APP_GPIO_DIR_IN) && ((atoi(argv[4])) >=

M2M_APP_GPIO_IN_MAX))

 || ((atoi(argv[3]) == M2M_APP_GPIO_DIR_OUT) && ((atoi(argv[4])) >=

M2M_APP_GPIO_OUT_MAX)))

 {

 perror("[GPIO] GPIO parameter out of range \n");

 return -1;

 }

 else

 {

 m2m_gpio->m2m_gpio_val = atoi(argv[4]);

 }

 }

 else

 {

 if(atoi(argv[3]) == M2M_APP_GPIO_DIR_IN)

 {

 m2m_gpio->m2m_gpio_val = M2M_APP_GPIO_IN_PD; // default pull-

down

 }

 else

 {

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 22 of 60 2022-03-14

Not Subject to NDA

 perror("[GPIO] Invalid parameter \n");

 return -1;

 }

 }

 ret = ioctl(dev, IOCTL_M2M_APP_GPIO_SET_DIR, m2m_gpio);

 if(ret)

 {

 perror("[GPIO] ioctl control failure \n");

 return ret;

 }

 break;

 /* When setting GPIO's output values (High / Low), direction should be

set to OUTPUT first. */

 case M2M_GPIO_MODE_SET_VAL:

 if((((atoi(argv[2]) > MAX_DEFINED_TGPIO_NUM) && (atoi(argv[2]) <

MIN_UART_GPIO))

 || (atoi(argv[2]) > MAX_UART_GPIO))

 || (atoi(argv[3]) >= M2M_APP_GPIO_OUT_MAX))

 {

 perror("[GPIO] GPIO parameter out of range \n");

 return -1;

 }

 m2m_gpio->m2m_gpio_num = atoi(argv[2]);

 m2m_gpio->m2m_gpio_dir = M2M_APP_GPIO_DIR_OUT;

 m2m_gpio->m2m_gpio_val = atoi(argv[3]);

 ret = ioctl(dev, IOCTL_M2M_APP_GPIO_SET_VAL, m2m_gpio);

 if(ret)

 {

 perror("[GPIO] ioctl control failure \n");

 return ret;

 }

 break;

 /* Read the current GPIO pin status */

 case M2M_GPIO_MODE_GET_VAL:

 if(((atoi(argv[2]) > MAX_DEFINED_TGPIO_NUM) && (atoi(argv[2]) <

MIN_UART_GPIO))

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 23 of 60 2022-03-14

Not Subject to NDA

 || (atoi(argv[2]) > MAX_UART_GPIO))

 {

 perror("[GPIO] GPIO parameter out of range \n");

 return -1;

 }

 m2m_gpio->m2m_gpio_num = atoi(argv[2]);

 m2m_gpio->m2m_gpio_dir = M2M_GPIO_DIR_IN;

 ret = ioctl(dev, IOCTL_M2M_APP_GPIO_GET_VAL, m2m_gpio);

 if(ret)

 {

 perror("[GPIO] ioctl control failure \n");

 return ret;

 }

 break;

 default:

 break;

 }

 free(m2m_gpio);

 close(dev);

 return ret;

}

 Using GPIO Interrupt

The GPIO-keys module allows a Linux-based application, to listen to GPIO interrupts. This

can be accomplished using a GPIO 1-10.

Application can then listen to “/dev/input/event1” to get the interrupt and the interrupt

data.

Several GPIOs are able to wake up the system from sleep. When using such a GPIO with

the GPIO-KEYS driver, any interrupt on this line will wake the system. Using a GPIO that

is not capable of waking up the system with the GPIO-KEYS driver will PREVENT THE

SYSTEM FROM GOING INTO SLEEP (the logic is very simple: if there is an interrupt

pending on a non-wakeup capable GPIO, do not go to sleep).

The GPIO-Keys module has three parameters:

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 24 of 60 2022-03-14

Not Subject to NDA

• tgpios – An array of tgpios to listen on. For example, tgpios=4,5 causes the driver

to listen to tgpio4 and tgpio5.

• pull_arr – An optional array of pull settings to apply to each tgpio used. The

following options are available:

o 0 – No Pull

o 1 – Pull Up

o 2 – Pull Down

o 3 – Default

• debounce_interval – An optional array of debounce intervals to apply to each tgpio

used. The value should be greater than or equal to 0, for example

debounce_interval = 10 means 1ms. The default value is 15.

Insert command for the GPIO-Keys module:

“insmod /data/gpio-keys tgpios=<GPIO>[,<GPIO>,,,] pull_arr=<pull>[,<pull>,,,]

[debounce_interval=<ms>[,<ms>,,,]]”

Remove command for the GPIO-Keys module:

“rmmod gpio-keys”

Example:

To start the gpio-keys driver listen on tgpio4 (no pull) and tgpio5 (pull up), use the

following command:

“insmod /data/gpio-keys tgpios=4,5 pull_arr=0,1”

And if the gpio-keys driver listen on tgpio4 (pull up), use the following command:

“insmod /data/gpio-keys tgpios=4 pull_arr=1”

To set debounce interval of 0.7ms on tgpio4 and 1ms on tgpio5 use the following

command:

“insmod /data/gpio-keys tgpios=4,5 pull_arr=0,1 debounce_interval=7,10”

Note: The number of tgpios parameters must match the number of

pull_arr parameters, otherwise pull_arr is totally ignored.

With debounce_interval set to 0, usually the average of detectable

interrupts in 1s is around 1600.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 25 of 60 2022-03-14

Not Subject to NDA

Note: The following GPIOs are wake up capable (All other GPIOs are

not wakeup capable):

• GPIO1

• GPIO5

• GPIO8

Warning: Some GPIOs (GPIO1, GPIO5 ~ 9) should not be pulled high

externally (by the carrier board) during module power on procedure.

Pulling those pads high during module power up might lead to

unwanted/non-operational boot mode.

Refer Hardware User Guide for more details.

Note: GPIO1 and GPIO8 each have "SLED" and "SWREADYEN"

functions by default, so in order to use the GPIO interface, the

functions should be disabled through AT command first.

m2m_gpio and GPIO-Keys cannot use the same GPIO at the same

time, but in the case of GPIO with interrupt set by GPIO-Keys, it is

possible to read the value of GPIO through m2m_gpio.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 26 of 60 2022-03-14

Not Subject to NDA

6. SPI INTERFACE

LE910Cx provides a 4-wire SPI (Serial Peripheral Interface) and the H/W Pins of SPI are

shared with Aux UART, so SPI and Aux UART cannot be used simultaneously.

LE910Cx provides the device driver node(/dev/m2m_drv_cfg) to switch from Aux UART to

SPI or from SPI to Aux UART and this device driver node is used to configure SPI CS,

interrupt, and slave ready GPIO by end-user application.

SPI interrupt and SPI slave ready GPIO are optional function.

The table below lists the supported GPIO pins for SPI CS, SPI interrupt or SPI slave ready

on LE910Cx.

GPIO Pins Descriptions

1 GPIO1

2 GPIO2

3 GPIO3

4 GPIO4

5 GPIO5

6 GPIO6

7 GPIO7

8 GPIO8

9 GPIO9

10 GPIO10

Table 6: LE910Cx Supported GPIO Pins for SPI Interface

 Switching from SPI to Aux UART or from Aux UART to SPI

The driver device node (/dev/m2m_drv_cfg) can be used to switch from SPI to Aux UART

or from Aux UART to SPI by the end-user application.

Example:

#define M2M_DRV_CFG_DEV_NAME "/dev/m2m_drv_cfg"

#define M2M_DRV_CFG_MAGIC 't'

#define M2M_DRV_IOCTL_GET_SPI_STATUS _IOR(M2M_DRV_CFG_MAGIC, 2, unsigned

int)

#define M2M_DRV_IOCTL_SET_SPI_STATUS _IOW(M2M_DRV_CFG_MAGIC, 3, unsigned

int)

int main(int argc, char *argv[])

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 27 of 60 2022-03-14

Not Subject to NDA

{

int fd = 0;

unsigned int spi_status = 0;

 fd = open(M2M_DRV_CFG_DEV_NAME, O_RDWR);

 if(fd < 0)

 {

 printf("%s driver open failed \n", M2M_DRV_CFG_DEV_NAME);

 return -1;

 }

/*Get SPI status 1: Enable SPI, 0: Disable SPI*/

if(ioctl(fd, M2M_DRV_IOCTL_GET_SPI_STATUS, &spi_status) < 0)

{

 printf("Unable to get current status\n");

}

spi_status = 1; //1: Switch from Aux UART to SPI | 0: Switch from SPI to Aux

UART.

if(ioctl(fd, M2M_DRV_IOCTL_SET_SPI_STATUS, &spi_status) < 0)

{

 printf("Unable to set status\n");

}

else{

 system(“reboot”);

}

close(fd);

return 0;

 Configuring SPI to Support Multiple CS for Multiple Slave

Devices

The driver device node (/dev/m2m_drv_cfg) can be used to support multiple slave devices

by the end-user application.

When the multiple SPI CS pins are configured by the end-user application, the end-user

application must execute “reboot”. From the next boot-up, LE910Cx configures the

multiple CS pins and creates SPI device driver nodes (/dev/spievB.0, /dev/spidevB.1, and

/dev/spidevB.2).

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 28 of 60 2022-03-14

Not Subject to NDA

If SPI CS pins are not configured, the SPI master of LE910Cx controls the dedicated

SPI_CS_pin for SPI device driver nodes (/dev/spievB.0, /dev/spidevB.1, and

/dev/spidevB.2). If you only want to use one SPI slave device, use "/dev/spidevB.0."

The end user should check SPI device driver nodes.

Example:

#define M2M_DRV_CFG_DEV_NAME "/dev/m2m_drv_cfg"

#define M2M_DRV_CFG_MAGIC 't'

#define M2M_DRV_IOCTL_GET_SPI_STATUS _IOR(M2M_DRV_CFG_MAGIC, 2, unsigned

int)

#define M2M_DRV_IOCTL_SET_SPI_STATUS _IOW(M2M_DRV_CFG_MAGIC, 3, unsigned

int)

#define M2M_DRV_IOCTL_GET_SPI_CFG_INFO _IOR(M2M_DRV_CFG_MAGIC, 4,

m2m_spi_info_type[3])

#define M2M_DRV_IOCTL_SET_SPI_CFG_INFO _IOW(M2M_DRV_CFG_MAGIC, 5,

m2m_spi_info_type[3])

/* Parameters to be passed through IOCTL */

typedef struct {

 unsigned int cs_gpio;

 unsigned int int_gpio;

 unsigned int slave_ready_gpio;

}m2m_spi_info_type;

int main(int argc, char *argv[])

{

int fd = 0;

m2m_spi_info_type m2m_spi_info[3]={0,};

unsigned int spi_status = 0;

 fd = open(M2M_DRV_CFG_DEV_NAME, O_RDWR);

 if(fd < 0)

 {

 printf("%s driver open failed \n", M2M_DRV_CFG_DEV_NAME);

 return -1;

 }

if(ioctl(fd, M2M_DRV_IOCTL_GET_SPI_STATUS, &spi_status) < 0)

{

 printf("Unable to get spi_status\n");

 }

 if(spi_status == 0)

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 29 of 60 2022-03-14

Not Subject to NDA

 spi_status = 1; // If SPI is enabled, from next boot-up, SPI device driver

nodes are created.

 if(ioctl(fd, M2M_DRV_IOCTL_SET_SPI_STATUS, &spi_status) < 0)

 {

 printf("unable to set spi_status\n");

 }

/*Get current SPI configuration information*/

 if(ioctl(fd, M2M_DRV_IOCTL_GET_SPI_CFG_INFO, &m2m_spi_info) < 0)

 {

 printf("unable to get SPI configuration information\n");

 }

/*Set SPI configuration information*/

 m2m_spi_info[0].cs_gpio = 0;

 m2m_spi_info[0].int_gpio = 0;

 m2m_spi_info[0].slave_ready_gpio = 0;

 m2m_spi_info[1].cs_gpio = 8;

 m2m_spi_info[1].int_gpio = 0;

 m2m_spi_info[1].slave_ready_gpio = 0;

 m2m_spi_info[2].cs_gpio = 9;

 m2m_spi_info[2].int_gpio = 0;

 m2m_spi_info[2].slave_ready_gpio = 0;

 if(ioctl(fd, M2M_DRV_IOCTL_SET_SPI_CFG_INFO, &m2m_spi_info) < 0)

 {

 printf("unable to set SPI configuration information\n");

 }

else

{

 system(“reboot”);

}

close(fd);

return 0;

 Configuring SPI to Support Multiple Slave Devices with

Interrupt

The device driver node(/dev/m2m_drv_cfg) can be used to support multiple slave devices

with interrupt by the end-user application.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 30 of 60 2022-03-14

Not Subject to NDA

If SPI interrupts are configured by the end-user application, the end-user application

must execute “reboot”. From the next boot-up, LE910Cx configures SPI interrupts with

“IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING” properties.

Example:

#define M2M_DRV_CFG_DEV_NAME "/dev/m2m_drv_cfg"

#define M2M_DRV_CFG_MAGIC 't'

#define M2M_DRV_IOCTL_GET_SPI_STATUS _IOR(M2M_DRV_CFG_MAGIC, 2, unsigned

int)

#define M2M_DRV_IOCTL_SET_SPI_STATUS _IOW(M2M_DRV_CFG_MAGIC, 3, unsigned

int)

#define M2M_DRV_IOCTL_GET_SPI_CFG_INFO _IOR(M2M_DRV_CFG_MAGIC, 4,

m2m_spi_info_type[3])

#define M2M_DRV_IOCTL_SET_SPI_CFG_INFO _IOW(M2M_DRV_CFG_MAGIC, 5,

m2m_spi_info_type[3])

/* Parameters to be passed through IOCTL */

typedef struct {

 unsigned int cs_gpio;

 unsigned int int_gpio;

 unsigned int slave_ready_gpio;

}m2m_spi_info_type;

int main(int argc, char *argv[])

{

int fd = 0;

m2m_spi_info_type m2m_spi_info[3]={0,};

unsigned int spi_status = 0;

 fd = open(M2M_DRV_CFG_DEV_NAME, O_RDWR);

 if(fd < 0)

 {

 printf("%s driver open failed \n", M2M_DRV_CFG_DEV_NAME);

 return -1;

 }

if(ioctl(fd, M2M_DRV_IOCTL_GET_SPI_STATUS, &spi_status) < 0)

{

 printf("Unable to get spi_status\n");

 }

 if(spi_status == 0)

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 31 of 60 2022-03-14

Not Subject to NDA

 spi_status = 1; // If SPI is enabled, from next boot-up, SPI device driver

nodes are created.

 if(ioctl(fd, M2M_DRV_IOCTL_SET_SPI_STATUS, &spi_status) < 0)

 {

 printf("unable to set spi_status\n");

 }

/*Get current SPI configuration information*/

 if(ioctl(fd, M2M_DRV_IOCTL_GET_SPI_CFG_INFO, &m2m_spi_info) < 0)

 {

 printf("unable to get SPI configuration information\n");

 }

/*Set SPI configuration information*/

 m2m_spi_info[0].cs_gpio = 0;

 m2m_spi_info[0].int_gpio = 2;

 m2m_spi_info[0].slave_ready_gpio = 0;

 m2m_spi_info[1].cs_gpio = 8;

 m2m_spi_info[1].int_gpio = 3;

 m2m_spi_info[1].slave_ready_gpio = 0;

 m2m_spi_info[2].cs_gpio = 9;

 m2m_spi_info[2].int_gpio = 4;

 m2m_spi_info[2].slave_ready_gpio = 0;

 if(ioctl(fd, M2M_DRV_IOCTL_SET_SPI_CFG_INFO, &m2m_spi_info) < 0)

 {

 printf("unable to set SPI configuration information\n");

 }

else

{

 system(“reboot”);

}

close(fd);

return 0;

6.3.1. Getting SPI Interrupt in Application Layer

Example:

#include <stdio.h>

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 32 of 60 2022-03-14

Not Subject to NDA

#include <stdint.h>

#include <stdlib.h>

#include <unistd.h>

#include <errno.h>

#include <string.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <linux/types.h>

#include <sys/types.h>

#include <ctype.h>

#include <getopt.h>

#include <time.h>

#include <linux/spi/spidev.h>

#include <poll.h>

#include <linux/types.h>

#include <linux/ioctl.h>

int main(int argc, char *argv[])

{

 int fd = 0;

 int ret;

 uint8_t mode = 0; // please set mode according to slave device

environment.

 uint32_t speed = 50000000; // please set speed according to slave device

environment.

 uint8_t bits_per_word = 8;

 struct pollfd poll_fds[1];

 if (access("/sys/devices/78b9000.spi/spi_master", F_OK) != 0)

 {

 fd = open(“/dev/spidev1.0”, O_RDWR);

 if(fd < 0)

 {

 printf("spidev1.0 driver open failed \n");

 return -1;

 }

 }

 else{

 fd = open(“/dev/spidev2.0”, O_RDWR);

 if(fd < 0)

 {

 printf("spidev2.0 driver open failed \n");

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 33 of 60 2022-03-14

Not Subject to NDA

 return -1;

 }

 }

 /*

 * spi mode

 */

 ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);

 if (ret == -1) printf("cant set WR spi mode");

 ret = ioctl(fd, SPI_IOC_RD_MODE, &mode);

 if (ret == -1) printf("can't set RD spi mode");

 /*

 * bits per word

 */

 ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits_per_word);

 if (ret == -1) printf("can't set WR bits per word");

 ret = ioctl(this->fd, SPI_IOC_RD_BITS_PER_WORD, &bits_per_word);

 if (ret == -1) printf("can't set RD bits per word");

 /*

 * max speed hz

 */

 ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);

 if (ret == -1) printf"can't WR set max speed hz");

 ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);

 if (ret == -1) printf("can't RD set max speed hz");

 /*

 * Waiting SPI interrupt singal using poll function.

 */

 poll_fds[0].fd = fd;

 poll_fds[0].events = POLLIN | POLLRDNORM;

 while (1)

 {

 ret = poll(poll_fds, 1, -1);

 if(ret > 0){

 printf(“ Interrupt is happened\n");

 // Read SPI data. If SPI read is called, SPI driver clears the

poll event.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 34 of 60 2022-03-14

Not Subject to NDA

 break;

 }

 }

 close(fd);

return 0;

}

 Configuring SPI to Support Multiple Slave Ready Signal

The device driver node(/dev/m2m_drv_cfg) can be used to support multiple slave devices

with interrupt by the end-user application.

Whenever an SPI slave device is not ready to transmit data on SPI bus, it turns GPIO

output to high state. When LE910Cx receives a high state from an SPI slave device, it waits

for 5 sec for low state from SPI slave device. If SPI slave device does not turn to a GPIO

low state, error occur in LE910Cx during SPI read/ write operation.

Example:

#define M2M_DRV_CFG_DEV_NAME "/dev/m2m_drv_cfg"

#define M2M_DRV_CFG_MAGIC 't'

#define M2M_DRV_IOCTL_GET_SPI_STATUS _IOR(M2M_DRV_CFG_MAGIC, 2, unsigned

int)

#define M2M_DRV_IOCTL_SET_SPI_STATUS _IOW(M2M_DRV_CFG_MAGIC, 3, unsigned

int)

#define M2M_DRV_IOCTL_GET_SPI_CFG_INFO _IOR(M2M_DRV_CFG_MAGIC, 4,

m2m_spi_info_type[3])

#define M2M_DRV_IOCTL_SET_SPI_CFG_INFO _IOW(M2M_DRV_CFG_MAGIC, 5,

m2m_spi_info_type[3])

/* Parameters to be passed through IOCTL */

typedef struct {

 unsigned int cs_gpio;

 unsigned int int_gpio;

 unsigned int slave_ready_gpio;

}m2m_spi_info_type;

int main(int argc, char *argv[])

{

int fd = 0;

m2m_spi_info_type m2m_spi_info[3]={0,};

unsigned int spi_status = 0;

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 35 of 60 2022-03-14

Not Subject to NDA

 fd = open(M2M_DRV_CFG_DEV_NAME, O_RDWR);

 if(fd < 0)

 {

 printf("%s driver open failed \n", M2M_DRV_CFG_DEV_NAME);

 return -1;

 }

if(ioctl(fd, M2M_DRV_IOCTL_GET_SPI_STATUS, &spi_status) < 0)

{

 printf("Unable to get spi_status\n");

 }

 if(spi_status == 0)

 spi_status = 1; // If SPI is enabled, from next boot-up, SPI device driver

nodes are created.

 if(ioctl(fd, M2M_DRV_IOCTL_SET_SPI_STATUS, &spi_status) < 0)

 {

 printf("unable to set spi_status\n");

 }

/*Get current SPI configuration information*/

 if(ioctl(fd, M2M_DRV_IOCTL_GET_SPI_CFG_INFO, &m2m_spi_info) < 0)

 {

 printf("unable to get SPI configuration information\n");

 }

/*Set SPI configuration information*/

 m2m_spi_info[0].cs_gpio = 0;

 m2m_spi_info[0].int_gpio = 2;

 m2m_spi_info[0].slave_ready_gpio = 5;

 m2m_spi_info[1].cs_gpio = 8;

 m2m_spi_info[1].int_gpio = 3;

 m2m_spi_info[1].slave_ready_gpio = 6;

 m2m_spi_info[2].cs_gpio = 9;

 m2m_spi_info[2].int_gpio = 4;

 m2m_spi_info[2].slave_ready_gpio = 7;

 if(ioctl(fd, M2M_DRV_IOCTL_SET_SPI_CFG_INFO, &m2m_spi_info) < 0)

 {

 printf("unable to set SPI configuration information\n");

 }

else

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 36 of 60 2022-03-14

Not Subject to NDA

{

 system(“reboot”);

}

close(fd);

return 0;

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 37 of 60 2022-03-14

Not Subject to NDA

7. SD/MMC CARD INTERFACE

LE910Cx provides an SD port that supports the SD3.0 specification and can be used with

standard SD/MMC memory cards.

 Detecting/Mounting of SD/MMC Memory Card

1. When an SD/MMC memory card is inserted, the device node is created

automatically as shown below.

2. Once the device node appears, run the below command from an end-user

application or from the adb shell.

Example:

mount -t vfat /dev/mmcblk0 /mnt/sdcard

3. Verify that the file system has been mounted (refer to the last line in the below

output):

4. To unmount the SD/MMC memory card from /mnt/sdcard run the below

command:

Example:

umount /mnt/sdcard

5. Remove the SD/MMC memory card from the card slot.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 38 of 60 2022-03-14

Not Subject to NDA

8. UART INTERFACE

LE910Cx supports two UART interfaces. Main UART pins include TX data (TXD), RX data

(RXD), Request To Send (RTS), Clear To Send (CTS), Data Terminal Ready (DTR), Data

Carrier Detect (DCD), and Ring Indicator (RI).

Note: The SPI hardware pins are shared with Aux UART, hence SPI

and Aux UART cannot be used simultaneously.

The following functions are supported by the UART interface:

• AT#V24CFG and AT#V24 command

• AT#PORTCFG command

Refer to AT commands Reference Guide for more details.

 Using #V24CFG Command

#V24CFG command is used to configure the serial interface pins as GPIO.

To support V24CFG command, a device driver is provided, which can be used externally

by the end-user application. The device driver is accessible from Linux driver device node

(/dev/m2m_drv_cfg).

Example:

#define M2M_DRV_CFG_DEV_NAME "/dev/m2m_drv_cfg"

#define M2M_DRV_CFG_MAGIC 't'

#define M2M_DRV_IOCTL_GET_V24_CFG _IOR(M2M_DRV_CFG_MAGIC, 6, unsigned

int [8])

#define M2M_DRV_IOCTL_SET_V24_CFG _IOW(M2M_DRV_CFG_MAGIC, 7, unsigned

int [8])

int main(int argc, char *argv[])

{

 int fd = 0;

 int result = 0

 unsigned int v24cfg_mode[8]={0,};

 fd = open(M2M_DRV_CFG_DEV_NAME, O_RDWR);

 if(fd < 0)

 {

 printf("%s driver open failed \n", M2M_DRV_CFG_DEV_NAME);

 return -1;

 }

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 39 of 60 2022-03-14

Not Subject to NDA

 //Get the current setting information

 result = ioctl(fd, M2M_DRV_IOCTL_GET_V24_CFG, &v24cfg_mode);

 if(result < 0)

 {

 printf("Failed read V24CFG info\n");

 }

 /*

 v24cfg_mode[0] : DCD

 v24cfg_mode[1] : CTS

 v24cfg_mode[2] : RI

 v24cfg_mode[3] : DSR

 v24cfg_mode[4] : DTR

 v24cfg_mode[5] : RTS

 v24cfg_mode[6] : RXD

 v24cfg_mode[7] : TXD

 if the value for each index in the array is 0,1 or 2:

 0 : AT commands serial port mode

 1 : GPIO mode Pins directly controlled by #V24 command

 2 : GPIO kernel mode Pins directly controlled by kernel GPIO

driver.

 */

 v24cfg_mode[0] = 2;

 v24cfg_mode[1] = 2;

 v24cfg_mode[2] = 2;

 v24cfg_mode[3] = 2;

 v24cfg_mode[4] = 2;

 v24cfg_mode[5] = 2;

 v24cfg_mode[6] = 2;

 v24cfg_mode[7] = 2;

 result = ioctl(fd, M2M_DRV_IOCTL_SET_V24_CFG, &v24cfg_mode);

 if(result < 0)

 {

 printf("Failed V24CFG setting\n");

 }

 else{

 printf("V24CFG setting is succeeded\n");

 system("reboot"); //module must be reboot, the pins configuration is

applied next power cycle

 }

 close(fd);

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 40 of 60 2022-03-14

Not Subject to NDA

 return 0;

}

 Using #PORTCFG Command

#PORTCFG supports the following variants.

Variants Descriptions

Variant 0 USIF0, USB0, and USB1 are connected to AT port.

Variant 3 USIF0, USIF1, and USB0 are connected to AT port.

Variant 8 USB0 and USB1 are connected to AT port.

Variant 11
USIF0, USB0 and USB1 are connected to AT port.

USIF1 is used for NMEA Sentences.

Variant 14(default) USIF0, USIF1, USB0 and USB1 are connected to AT port.

Variant 15
USIF0, USB0 and USB1 are connected to AT port.

USIF1 is connected to console port.

Variant 16
USIF0, USB0 and USB1 are connected to AT port.

USIF1 is used for external BT UART supporting.

Table 6 : #PORTCFG Command

To support #PORTCFG command, device driver is provided, and the device driver can be

used externally by the end-user application. The device driver is accessible from Linux

driver device node(/dev/m2m_drv_cfg).

Example:

#define M2M_DRV_CFG_DEV_NAME "/dev/m2m_drv_cfg"

#define M2M_DRV_CFG_MAGIC 't'

#define M2M_DRV_IOCTL_GET_PORTCFG _IOR(M2M_DRV_CFG_MAGIC, 8,

m2m_portcfg_info_type)

#define M2M_DRV_IOCTL_SET_PORTCFG _IOW(M2M_DRV_CFG_MAGIC, 9, unsigned int)

typedef struct {

 unsigned int act_variant;

 unsigned int req_variant;

}m2m_portcfg_info_type;

int main(int argc, char *argv[])

{

 int fd = 0;

 int result = 0

 m2m_portcfg_info_type m2m_portcfg_info ={0,};

 unsigned int req_variant = 0;

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 41 of 60 2022-03-14

Not Subject to NDA

 fd = open(M2M_DRV_CFG_DEV_NAME, O_RDWR);

 if(fd < 0)

 {

 printf("%s driver open failed \n", M2M_DRV_CFG_DEV_NAME);

 return -1;

 }

 //Get the current setting information

 result = ioctl(fd, M2M_DRV_IOCTL_GET_PORTCFG, &m2m_portcfg_info);

 if(result < 0)

 {

 printf("Failed read PORTCFG info\n");

 }

/*

 if the value of m2m_portcfg_info.act_variant is 0,3,8,11,14,15 or 16.

 0: USIF0, USB0, and USB1 are connected to AT port

 3: USIF0, USIF1, and USB0 are connected to AT port

 8: USB0 and USB1 are connected to AT port.

 11: USIF0, USB0 and USB1 are connected to AT port and USIF1 is used for

NMEA Setences.

 14: USIF0, USIF1, USB0 and USB1 is connected to AT port.

 15: USIF0, USB0 and USB1 are connected to AT port and USIF1 is connected

to console port.

 16: USIF0, USB0 and USB1 are connected to AT port and USIF1 is used for

external BT UART supporting

 */

 //Set the variant of #PORTCFG

 req_variant = 15;

 result = ioctl(fd, M2M_DRV_IOCTL_SET_PORTCFG, &req_variant);

 if(result < 0)

 {

 printf("Failed PORTCFG setting\n");

 }

 else{

 printf("PORTCFG setting is succeeded\n");

 system("reboot"); //module must be reboot, the port configuration is

applied next power cycle

 }

 close(fd);

 return 0;

}

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 42 of 60 2022-03-14

Not Subject to NDA

9. USB INTERFACE

LE910Cx includes a USB2.0 compliant Universal Serial Bus (USB) Transceiver, which

operates at USB 2.0 High-speed (480Mbits/sec). By default, the module is configured as

a USB peripheral mode.

The table below lists the available USB compositions:

Product ID Description

1200 None mode

1201 DIAG + ADB + RMNET + NMEA + MODEM + MODEM + SAP

1203 RNDIS + DIAG + ADB + NMEA + MODEM + MODEM + SAP

1204 DIAG + ADB + MBIM + NMEA + MODEM + MODEM + SAP

1205 MBIM

1206 DIAG + ADB + ECM + NMEA + MODEM + MODEM + SAP

1250 RMNET + NMEA + MODEM + MODEM + SAP

1251 RNDIS + NMEA + MODEM + MODEM + SAP

1252 MBIM + NMEA + MODEM + MODEM + SAP

1253 ECM + NMEA + MODEM +MODEM + SAP

1254 MODEM + MODEM

1255 NMEA + MODEM + MODEM + SAP

1230 DIAG + ADB + RMNET + AUDIO + NMEA + MODEM + MODEM + SAP

1231 RNDIS + DIAG + ADB + AUDIO + NMEA + MODEM + MODEM + SAP

1260 DIAG + ADB + RMNET + NMEA + MODEM + MODEM + SAP

1261 DIAG + ADB + RMNET + NMEA + MODEM + MODEM + SAP

1262 DIAG + ADB + RMNET + NMEA + MODEM + MODEM + AUX

Table 7: LE910Cx USB Compositions

For more information, refer to #USBCFG command on AT commands Reference Guide.

 Reading Current USB Product ID

Example:

include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 43 of 60 2022-03-14

Not Subject to NDA

#include <fcntl.h>

#include <sys/wait.h>

#include <unistd.h>

#include <errno.h>

#define CURRENT_CONFIGURATION_FILE_NAME "/data/usb/boot_hsusb_composition"

static int get_current_usb_configuration_name_id(char

*current_configuration_file_name);

static int get_current_usb_configuration_name_id(char

*current_configuration_file_name)

{

 char *composition_name_ptr = NULL;

 int composition_id = 0;

 char *linkname = NULL;

 ssize_t r = 0;

 if(current_configuration_file_name == NULL)

 {

 printf("current_configuration_file_name NULL pointer");

 return -1;

 }

 linkname = malloc(PATH_MAX + 1);

 if (linkname == NULL) {

 printf("insufficient memory can't malloc\n");

 return -1;

 }

 memset(linkname, 0, (PATH_MAX + 1));

 r = readlink(current_configuration_file_name, linkname, PATH_MAX);

 if (r < 0) {

 printf("readlink failed. r = %d\n", r);

 free(linkname);

 return -1;

 }

 if (r < 4) {

 printf("File link error. r = %d\n", r);

 free(linkname);

 return -1;

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 44 of 60 2022-03-14

Not Subject to NDA

 }

 //Last 4 charachters on file path will be composition file name,

 //which are also the composition number and the information we're after.

 linkname[r] = '\0';

 composition_name_ptr = &linkname[r-4];

 printf("composition_name_ptr = %s\n", composition_name_ptr);

 composition_id = atoi(composition_name_ptr);

 printf("Current composition is %d\n", composition_id);

 free(linkname);

 return composition_id;

}

int main(int argc, char *argv[])

{

 int pid = 0;

 pid =

get_current_usb_configuration_name_id(CURRENT_CONFIGURATION_FILE_NAME);

 printf("Current USB product ID = %d \n", pid);

 return 0;

}

 Changing USB Composition

Example:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/wait.h>

#include <unistd.h>

#include <errno.h>

#define MAX_COMMAND_LEN 256

#define USB_COMPOSITION_SET_COMMAND "usb_composition "

static int change_usb_composition(int new_composition_name_id);

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 45 of 60 2022-03-14

Not Subject to NDA

static int change_usb_composition(int new_composition_name_id)

{

 char change_usb_composition_command[MAX_COMMAND_LEN] = {0};

 int res = 0;

 snprintf (change_usb_composition_command, MAX_COMMAND_LEN, "%s %d n y

n n", USB_COMPOSITION_SET_COMMAND, new_composition_name_id);

 res = system(change_usb_composition_command);

 if(res == 0)

 {

 printf("USB composition was changed. Need to reboot.");

 return 0;

 }

 else

 {

 printf("Cannot execute %s command, returned value = %d",

change_usb_composition_command, res);

 return -1;

 }

}

int main(int argc, char *argv[])

{

 int pid = 0;

 int result = 0;

/*

 To change the USB composition to PID_1203 or the other PID, please set

to 1203 or the other PID as below.

*/

 pid = 1203; // RNDIS + DIAG + ADB + NMEA + MODEM + MODEM + SAP

 result = change_usb_composition(pid);

 if(result == 0)

 {

 system ("reboot");

 } else{

 printf(“cannot change usb composition”);

 }

 return 0;

}

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 46 of 60 2022-03-14

Not Subject to NDA

10. EXCEPTION INFORMATION

 Reading Exception Information

You can read the exception information from the below path:

/sys/class/misc/telit_rawdata/fatal_info

Example:

~ # cat /sys/class/misc/telit_raw_data/fatal_info

#EXCEPINFO:

1,"M0F.220006","2019/11/05","02:48:20",1704,"dsatm2mgen.c","Assertion 0

failed:PC 837E6EDC:LR 837E6454:SP 869FE0B8"

#EXCEPINFO: 2,"","","",0,"",""

#EXCEPINFO: 3,"","","",0,"",""

#EXCEPINFO: 4,"","","",0,"",""

#EXCEPINFO: 5,"","","",0,"",""

 Clearing Stored Information

You can clear the stored exception information by writing ‘0’ to below path:

/sys/class/misc/telit_rawdata/fatal_info

Example:

~ # cat /sys/class/misc/telit_raw_data/fatal_info

#EXCEPINFO:

1,"M0F.220006","2019/11/05","02:48:20",1704,"dsatm2mgen.c","Assertion 0

failed:PC 837E6EDC:LR 837E6454:SP 869FE0B8"

#EXCEPINFO: 2,"","","",0,"",""

#EXCEPINFO: 3,"","","",0,"",""

#EXCEPINFO: 4,"","","",0,"",""

#EXCEPINFO: 5,"","","",0,"",""

~ # echo 0 > /sys/class/misc/telit_raw_data/fatal_info

~ # cat /sys/class/misc/telit_raw_data/fatal_info

#EXCEPINFO: 1,"","","",0,"",""

#EXCEPINFO: 2,"","","",0,"",""

#EXCEPINFO: 3,"","","",0,"",""

#EXCEPINFO: 4,"","","",0,"",""

#EXCEPINFO: 5,"","","",0,"",""

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 47 of 60 2022-03-14

Not Subject to NDA

11. WLAN INTERFACE

 Setting WLAN SDIO Clock

You can set SDIO clock for the WLAN interface with write <clock> value to the below file.

The changed value will be applied when the WLAN is started. If this value changes while

the WLAN is already turned on, it must be restarted.

Note: The changed value by the user will be maintained even after

module reboot or FW update.

/sys/class/misc/telit_raw_data/wlan_max_clock

The <clock> value is mapped as shown in the table below.

Value Frequency

1 400khz

2 20Mhz

3 25Mhz

4 50Mhz

5 100Mhz

6 (default) 200Mhz

Table 8: WLAN SDIO Clock Value

For example, if you like to set the SDIO clock to 50Mhz,

 Getting Current WLAN SDIO Clock

To get the current and applied maximum SDIO clock for the WLAN interface, use the

following file:

/sys/class/misc/telit_raw_data/wlan_max_clock

The currently configured <clock> value will be returned.

For example, If the 50Mhz has been configured,

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 48 of 60 2022-03-14

Not Subject to NDA

12. OPM INTERFACE

LE910Cx module provides an OPM (Operating Mode) interface to control the module's

operating mode and the Power Saving Mode (PSM).

This interface allows you to change the behavior of your modem through a user

application on Linux, which provides the same behavior and modes as the +CFUN

command.

Note:

For more information on AT+CFUN command, refer to AT commands

Reference Guide.

For more information on Power Saving Mode, refer to PSM Application

Note for more details)

 Using OPM Interface

The device driver node (/dev/telit_opm) can be used to control modem operating mode by

the user application, and the parameters for each mode are as follows.

The table below lists the supported operating modes for the LE910Cx.

Operating Mode Description

1 Mobile full functionality with power saving disabled

2 Disable TX (Not support)

4 Disable both TX and RX

5 Mobile full functionality with power saving enabled

6 Mobile reboot

7 Offline mode

8 FTM

Table 9: LE910Cx Supported Operating Modes

Example:

#define OPM_DEV_PATH "/dev/telit_opm"

#define M2M_OPM_MAGIC 'o'

#define IOCTL_M2M_OPM_SET _IOW(M2M_OPM_MAGIC, 0, unsigned int)

#define IOCTL_M2M_OPM_GET _IOW(M2M_OPM_MAGIC, 1, unsigned int)

#define M2M_OPM_MODE_MAX 9

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 49 of 60 2022-03-14

Not Subject to NDA

/* OPM command parameters */

enum

{

 M2M_OPM_CMD_SET_VAL = 0,

 M2M_OPM_CMD_GET_VAL,

 M2M_OPM_CMD_MAX

};

 int main(int argc, char *argv[])

{

 int dev = 0;

 int ret = 0;

 unsigned int opm_val=0;

 if(atoi(argv[1]) >= M2M_OPM_CMD_MAX)

 {

 perror("[OPM] cmd parameter out of range \n");

 return -1;

 }

 if(argc == 3)

 {

 opm_val = atoi(argv[2]);

}

 dev = open(OPM_DEV_PATH, O_RDWR);

 if(dev < 0)

 {

 perror("[OPM] driver open failed \n");

 return -1;

 }

 switch(atoi(argv[1]))

 {

 case M2M_OPM_CMD_SET_VAL:

 ret = ioctl(dev, IOCTL_M2M_OPM_SET, opm_val);

 break;

 case M2M_OPM_CMD_GET_VAL:

 ret = ioctl(dev, IOCTL_M2M_OPM_GET, &opm_val);

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 50 of 60 2022-03-14

Not Subject to NDA

 if(ret)

 return -1;

 else

 return opm_val;

 break;

 default:

 break;

 }

 close(dev);

 return ret;

}

 Configuring PSM DTR and WAKE_LOCK

The module can enter the power saving mode when all the below condition are met.

• USB disconnected

• UART's DTR off

• No WAKE_LOCK

To satisfy a PSM condition, users who are unable to control the DTR-pin on an external

device can turn off a UART DTR by configuring it as a GPIO via AT#V24CFG (/dev/m2m drv

cfg). For more information, see chapter 8 UART Interface.

In addition, if the user wants to maintain wake-up status after setting the operating-mode

5 (+CFUN=5) is set, the user application can use WAKE_LOCK to prevent the module from

entering Sleep, as shown below.

Example:

// Set WAKE_LOCK for keeping wake-up

system(“echo telit_opm > /sys/power/wake_lock”)

// Set WAKE_UNLOCK for entering PSM

system(“echo telit_opm > /sys/power/wake_unlock”)

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 51 of 60 2022-03-14

Not Subject to NDA

Warning: Users who use this driver should enter power saving mode

only if they have the resources to wake up all the time.

"4-Disable RF" and "7-Offline" modes should be used with caution.

Otherwise, the module may not wake up from Sleep status.

(For more information refer to Software User Guide)

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 52 of 60 2022-03-14

Not Subject to NDA

13. THERMAL SENSOR INTERFACE

The LE910Cx has a thermal sensor interface that allows a user application or a Linux

shell to read the module's temperature.

There are six thermal sensors (five TSENS and one PA_THERM) on LE910Cx, two of which

are used for thermal mitigation as listed below.

Sensor Area

TSENS 3 MDM9207

PA_THERM PA (Power Amp.)

Table 10: Thermal Mitigation Sensors

 Reading Thermal Sensors

The sysfs node ‘/sys/class/thermal’ can be used to read modem temperature by the

user application or shell, and the nodes are as follows.

Sensor Sysfs Node Value

TSENS 3 /sys/class/thermal/thermal_zone3/temp Degree Celsius

PA_THERM /sys/class/thermal/thermal_zone5/temp Degree Celsius

Table 11: Read Thermal Sensors

Example:

// Read TSENS 3

/ # cat /sys/class/thermal/thermal_zone3/type

tsens_tz_sensor3

/ # cat /sys/class/thermal/thermal_zone3/temp

32

// Read PA_THERM

/ # cat /sys/class/thermal/thermal_zone5/type

pa_therm0

/ # cat /sys/class/thermal/thermal_zone5/temp

28

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 53 of 60 2022-03-14

Not Subject to NDA

14. ADC INTERFACE

LE910Cx provides an Analog-to-Digital Converter (ADC) interface that can be used to read

data from a user application or a Linux shell.

 Reading ADC Values

The sysfs node ‘/sys/devices/qpnp-vadc-8’ can be used to read three ADC channels by

the user application or shell, and the nodes are as follows.

ADC Channels Sysfs Node Value

ADC1 /sys/devices/qpnp-vadc-8/adc1 Microvolts (µV)

ADC2 /sys/devices/qpnp-vadc-8/adc2 Microvolts (µV)

ADC3 /sys/devices/qpnp-vadc-8/adc3 Microvolts (µV)

Table 12: ADC Values

Example:

// Read ADC1 (input: 7V)

/ # cat /sys/devices/qpnp-vadc-8/adc1

Result:716000 Raw:7d2e

// Read ADC2 (input: 6V)

/ # cat /sys/devices/qpnp-vadc-8/adc2

Result:607000 Raw:78d7

// Read ADC3 (input: 1.7V)

/ # cat /sys/devices/qpnp-vadc-8/adc3

Result:1709000 Raw:a4c5

Note: Only "Result" is valid for values returned by ADC nodes.

In case of "Raw", user application cannot use it because it contains

internal setting values.

ADC interface is not available on LE910C1-SA, LE910C1-ST, and

LE910C1-SV products. (Supported only through AT command).

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 54 of 60 2022-03-14

Not Subject to NDA

15. PRODUCT AND SAFETY INFORMATION

 Copyrights and Other Notices

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE

Although reasonable efforts have been made to ensure the accuracy of this document,

Telit assumes no liability resulting from any inaccuracies or omissions in this document,

or from the use of the information contained herein. The information contained in this

document has been carefully checked and is believed to be reliable. Telit reserves the

right to make changes to any of the products described herein, to revise it and to make

changes from time to time without any obligation to notify anyone of such revisions or

changes. Telit does not assume any liability arising from the application or use of any

product, software, or circuit described herein; neither does it convey license under its

patent rights or the rights of others.

This document may contain references or information about Telit’s products (machines

and programs), or services that are not announced in your country. Such references or

information do not necessarily mean that Telit intends to announce such Telit products,

programming, or services in your country.

15.1.1. Copyrights

This instruction manual and the Telit products described herein may include or describe

Telit copyrighted material, such as computer programs stored in semiconductor

memories or other media. The laws in Italy and in other countries reserve to Telit and its

licensors certain exclusive rights for copyrighted material, including the exclusive right

to copy, reproduce in any form, distribute, and make derivative works of the copyrighted

material. Accordingly, any of Telit’s or its licensors’ copyrighted material contained

herein or described in this instruction manual, shall not be copied, reproduced,

distributed, merged, or modified in any way without the express written permission of the

owner. Furthermore, the purchase of Telit products shall not be deemed to grant in any

way, neither directly nor by implication, or estoppel, any license.

15.1.2. Computer Software Copyrights

Telit and the Third Party supplied Software (SW) products, described in this instruction

manual may include Telit’s and other Third Party’s copyrighted computer programs

stored in semiconductor memories or other media. The laws in Italy and in other

countries reserve to Telit and other Third Party, SW exclusive rights for copyrighted

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 55 of 60 2022-03-14

Not Subject to NDA

computer programs, including – but not limited to - the exclusive right to copy or

reproduce in any form the copyrighted products. Accordingly, any copyrighted computer

programs contained in Telit’s products described in this instruction manual shall not be

copied (reverse engineered) or reproduced in any manner without the express written

permission of the copyright owner, being Telit or the Third-Party software supplier.

Furthermore, the purchase of Telit products shall not be deemed to grant either directly

or by implication, estoppel, or in any other way, any license under the copyrights, patents,

or patent applications of Telit or other Third Party supplied SW, except for the normal

non-exclusive, royalty free license to use arising by operation of law in the sale of a

product.

 Usage and Disclosure Restrictions

15.2.1. License Agreements

The software described in this document is owned by Telit and its licensors. It is furnished

by express license agreement only and shall be used exclusively in accordance with the

terms of such agreement.

15.2.2. Copyrighted Materials

The Software and the documentation are copyrighted materials. Making unauthorized

copies is prohibited by the law. The software or the documentation shall not be

reproduced, transmitted, transcribed, even partially, nor stored in a retrieval system, nor

translated into any language or computer language, in any form or by any means, without

prior written permission of Telit.

15.2.3. High Risk Materials

Components, units, or third-party goods used in the making of the product described

herein are NOT fault-tolerant and are NOT designed, manufactured, or intended for use

as on-line control equipment in the following hazardous environments requiring fail-safe

controls: operations of Nuclear Facilities, Aircraft Navigation or Aircraft Communication

Systems, Air Traffic Control, Life Support, or Weapons Systems (“High Risk Activities").

Telit and its supplier(s) specifically disclaim any expressed or implied warranty of fitness

eligibility for such High-Risk Activities.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 56 of 60 2022-03-14

Not Subject to NDA

15.2.4. Trademarks

TELIT and the Stylized T-Logo are registered in the Trademark Office. All other product

or service names are property of their respective owners.

15.2.5. Third Party Rights

The software may include Third Party’s software Rights. In this case the user agrees to

comply with all terms and conditions imposed in respect of such separate software

rights. In addition to Third Party Terms, the disclaimer of warranty and limitation of

liability provisions in this License, shall apply to the Third-Party Rights software as well.

TELIT HEREBY DISCLAIMS ANY AND ALL WARRANTIES EXPRESSED OR IMPLIED FROM

ANY THIRD PARTY REGARDING ANY SEPARATE FILES, ANY THIRD-PARTY MATERIALS

INCLUDED IN THE SOFTWARE, ANY THIRD-PARTY MATERIALS FROM WHICH THE

SOFTWARE IS DERIVED (COLLECTIVELY “OTHER CODES”), AND THE USE OF ANY OR ALL

OTHER CODES IN CONNECTION WITH THE SOFTWARE, INCLUDING (WITHOUT

LIMITATION) ANY WARRANTIES OF SATISFACTORY QUALITY OR FITNESS FOR A

PARTICULAR PURPOSE.

NO THIRD PARTY LICENSORS OF OTHER CODES MUST BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING WITHOUT LIMITATION LOST OF PROFITS), HOWEVER CAUSED AND

WHETHER MADE UNDER CONTRACT, TORT OR OTHER LEGAL THEORY, ARISING IN ANY

WAY OUT OF THE USE OR DISTRIBUTION OF THE OTHER CODES OR THE EXERCISE OF

ANY RIGHTS GRANTED UNDER EITHER OR BOTH THIS LICENSE AND THE LEGAL TERMS

APPLICABLE TO ANY SEPARATE FILES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

15.2.6. Waiver of Liability

IN NO EVENT WILL TELIT AND ITS AFFILIATES BE LIABLE FOR AY DIRECT, INDIRECT,

SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY

INDIRECT DAMAGE OF ANY KIND WHATSOEVER, INCLUDING BUT NOT LIMITED TO

REIMBURSEMENT OF COSTS, COMPENSATION OF ANY DAMAGE, LOSS OF

PRODUCTION, LOSS OF PROFIT, LOSS OF USE, LOSS OF BUSINESS, LOSS OF DATA OR

REVENUE, WHETHER OR NOT THE POSSIBILITY OF SUCH DAMAGES COULD HAVE BEEN

REASONABLY FORESEEN, CONNECTED IN ANY WAY TO THE USE OF THE PRODUCT/S

OR TO THE INFORMATION CONTAINED IN THE PRESENT DOCUMENTATION, EVEN IF

TELIT AND/OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 57 of 60 2022-03-14

Not Subject to NDA

 Safety Recommendations

Make sure the use of this product is allowed in your country and in the environment

required. The use of this product may be dangerous and has to be avoided in areas where:

• it can interfere with other electronic devices, particularly in environments such as

hospitals, airports, aircrafts, etc.

• there is a risk of explosion such as gasoline stations, oil refineries, etc. It is the

responsibility of the user to enforce the country regulation and the specific

environment regulation.

Do not disassemble the product; any mark of tampering will compromise the warranty

validity. We recommend following the instructions of the hardware user guides for

correct wiring of the product. The product has to be supplied with a stabilized voltage

source and the wiring has to be conformed to the security and fire prevention regulations.

The product has to be handled with care, avoiding any contact with the pins because

electrostatic discharges may damage the product itself. Same cautions have to be taken

for the SIM, checking carefully the instruction for its use. Do not insert or remove the SIM

when the product is in power saving mode.

The system integrator is responsible for the functioning of the final product. Therefore,

the external components of the module, as well as any project or installation issue, have

to be handled with care. Any interference may cause the risk of disturbing the GSM

network or external devices or having an impact on the security system. Should there be

any doubt, please refer to the technical documentation and the regulations in force. Every

module has to be equipped with a proper antenna with specific characteristics. The

antenna has to be installed carefully in order to avoid any interference with other

electronic devices and has to guarantee a minimum distance from the body (20 cm). In

case this requirement cannot be satisfied, the system integrator has to assess the final

product against the SAR regulation.

The equipment is intended to be installed in a restricted area location.

The equipment must be supplied by an external specific limited power source in

compliance with the standard EN 62368-1.

The European Community provides some Directives for the electronic equipment

introduced on the market. All of the relevant information is available on the European

Community website:

https://ec.europa.eu/growth/sectors/electrical-engineering_en

https://ec.europa.eu/growth/sectors/electrical-engineering_en

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 58 of 60 2022-03-14

Not Subject to NDA

16. GLOSSARY

HSIC High-Speed Inter-Chip

I2C Inter-Integrated Circuit

GPIO General Purpose Input/Output

SDA Serial Data Line

SCL Serial Clock Line

SPI Serial Peripheral Interface

USB Universal Serial Bus

UART Universal Asynchronous Receiver Transmitter

 LE910Cx Linux Device Driver Application Note

80502NT11769A Rev.7 Page 59 of 60 2022-03-14

Not Subject to NDA

17. DOCUMENT HISTORY

Revision Date Changes

7 2022-03-14 Updated clauses:

4.1.2. Controlling Ethernet Interface in User Application

5.1. Using GPIO Interface

5.2. Using GPIO Interrupt

6 2022-02-11 Template updated

Minor editorial changes

5 2021-06-09 Update:

- Section 4.1.3. How to disable/enable the “CLK125” of external

Marvell PHY (88E1512/5)

4 2021-06-04 New:

 - Section 4.1.3. How to disable/enable the “CLK125” of external

Marvell PHY (88E1512/5)

Update:

 - Section 5. GPIO INTERFACE

3 2020-12-23 New:

- Section 5.2. How to use GPIO interrupt

Update:

- Section 13. THERMAL SENEOR INTERFACE

- Section 5.1. How to use GPIO interface

- Section 9. USB INTERFACE

2 2020-11-04 New:

 - Section 13. THERMAL SENEOR INTERFACE

 - Section 14. ADC INTERFACE

Update: - Section 4. ETHERNET INTERFACE

1 2020-01-21 New:

- Section 11. WLAN INTERFACE

- Section 12. OPM INTERFACE

Update:

- Applicability table

0 2019-11-22 Initial version

From Mod.0809 rev.3

	Applicability Table
	1. Introduction
	1.1. Scope
	1.2. Audience
	1.3. Contact Information, Support
	1.4. Symbol Conventions
	1.5. Related Documents

	2. I2C Interface
	2.1. Using I2C Interface

	3. HSIC Interface
	3.1. HSIC Signaling
	3.2. Configuring HSIC Master/ Slave Mode

	4. Ethernet Interface
	4.1. Using SGMII Interface
	4.1.1. Checking Ethernet Cable Connection Status
	4.1.2. Controlling Ethernet Interface in User Application
	4.1.3. Enabling/Disabling the “CLK125” of External Marvell PHY (88E1512/5)

	5. GPIO Interface
	5.1. Using GPIO Interface
	5.2. Using GPIO Interrupt

	6. SPI Interface
	6.1. Switching from SPI to Aux UART or from Aux UART to SPI
	6.2. Configuring SPI to Support Multiple CS for Multiple Slave Devices
	6.3. Configuring SPI to Support Multiple Slave Devices with Interrupt
	6.3.1. Getting SPI Interrupt in Application Layer

	6.4. Configuring SPI to Support Multiple Slave Ready Signal

	7. SD/MMC Card Interface
	7.1. Detecting/Mounting of SD/MMC Memory Card

	8. UART Interface
	8.1. Using #V24CFG Command
	8.2. Using #PORTCFG Command

	9. USB Interface
	9.1. Reading Current USB Product ID
	9.2. Changing USB Composition

	10. Exception Information
	10.1. Reading Exception Information
	10.2. Clearing Stored Information

	11. WLAN Interface
	11.1. Setting WLAN SDIO Clock
	11.2. Getting Current WLAN SDIO Clock

	12. OPM Interface
	12.1. Using OPM Interface
	12.2. Configuring PSM DTR and WAKE_LOCK

	13. Thermal Sensor Interface
	13.1. Reading Thermal Sensors

	14. ADC Interface
	14.1. Reading ADC Values

	15. Product and Safety Information
	15.1. Copyrights and Other Notices
	15.1.1. Copyrights
	15.1.2. Computer Software Copyrights

	15.2. Usage and Disclosure Restrictions
	15.2.1. License Agreements
	15.2.2. Copyrighted Materials
	15.2.3. High Risk Materials
	15.2.4. Trademarks
	15.2.5. Third Party Rights
	15.2.6. Waiver of Liability

	15.3. Safety Recommendations

	16. Glossary
	17. Document History

